

Abdominal Wall Closure.

SoTM Applied

Evidence-based Conversation

External Confidence

TAMILY OF COMPANIES

The Science of Tissue Management

Residency Program 2016

Today's Presentation

- Critical factors of fascia healing
- Epidemiology and impact of wound complications
- Clinical evidence supporting innovative surgical solutions to achieve superior patient outcomes
- Evidence-based best practices in fascia closure
- The evolution of wound closure: Anchored tissue control devices

What is The Science of Tissue Management?

- The Science of Tissue Management is a principle we follow to achieve a scientific understanding of living tissue/device interaction
- ... to improve patient care and
- ... to enhance clinical outcomes

Tissue Management is based on The Tenets of Halsted

- Obliteration of dead space and adequate removal of material.
- Careful hemostasis to improve conditions for the procedure and limit infection and dead space.
- Strict aseptic technique during preparation and surgery.
- Sharp anatomic dissection of tissues.
- Avoidance of tension.
- Gentle handling of tissue.

RSCM

William S. Halsted, M.D.

Departemen Ilmu Bedah FKUI–RSCM Program Studi Ilmu Bedah

RSCM

Anatomy of the Anterior Abdominal Wall

Fascia

- Firm, strong connective tissue that sheaths muscles and is a main supportive structure of the body
- Laparotomy incisions transect fascia for access into the abdominal cavity
 - A vertical midline incision passes through the skin, subcutaneous fat, Scarpa's fascia, white line, transversalis fascia, extra peritoneal fat and parietal peritoneal layer with no muscle involvement

The Phases of Fascia Healing

• Fascia healing consists of 3 consecutive, overlapping phases

Interruptions in the Healing Process Can Lead to Wound Complications

- Surgical site infection (SSI)
 - Post-operative infection involving the layers (e.g., skin, fascia) incised during surgery but can also extend to organ/anatomic spaces¹
 - Examples of evidence of infection: purulent drainage, isolated organisms

- 1. Pessaux Arch Surg 2003; 138: 314-24;
- 2. Clark JJ. Crit Care Nurs Q 2002; 25:1-12
- 3. Franz, et al. Wound Rep Reg 2008; 16: 723-48

Interruptions in the Healing Process Can Lead to Wound Complications

- Tissue separation/wound dehiscence
 - Disruption of the sutured edges of the wound. Partial separation of the fascia may result in an incisional hernia, whereas complete disruption of fascia and overlying tissues may result in a burst abdomen²

- 1. Pessaux Arch Surg 2003; 138: 314-24;
- 2. Clark JJ. Crit Care Nurs Q 2002; 25:1-12
- 3. Franz, et al. Wound Rep Reg 2008; 16: 723-48

Departemen Ilmu Bedah FKUI–RSCM Program Studi Ilmu Bedah

RSCM¹

Interruptions in the Healing Process Can Lead to Wound Complications

- Incisional hernia
 - Any abdominal wall gap with or without a bulge in the area of a postoperative scar perceptible or palpable by clinical examination or imaging³

- 1. Pessaux Arch Surg 2003; 138: 314-24;
- 2. Clark JJ. Crit Care Nurs Q 2002; 25:1-12
- 3. Franz, et al. Wound Rep Reg 2008; 16: 723-48

What are the Patient Factors that Influence Wound Healing?

- Age
- Gender
- Nutrition
- Comorbidities & underlying disease
 - Infection
 - Diabetes
 - Heart disease
 - Pulmonary disease
 - Hypertension
- Lifestyle Factors
 - Smoking
 - Obesity

Departemen Ilmu Bedah FKUI–RSCM RSCM^{1/2}

What are the Wound Factors that Affect Fascia Healing?

- Tissue perfusion/blood supply
- Necrosis
- Presence of foreign body
- Localized infection/contamination [Wound classification]
 - I. Clean
 - II. Clean-contaminated
 - III. Contaminated IV. Dirty

- Age & Gender
 - Compared to younger patients, older patients often have
 - Reduced collagen synthesis and elevated collagen degradation during wound healing compared to younger adults, particularly in men¹
 - Increased type III collagen synthesis (weaker) vs. type I collagen^{2,3}
 - Increased type III collagen associated with risk of incisional hernia⁴
 - Reduced blood circulation⁵ and angiogenesis⁶

1. Sorensen LT. Hernia 2006; 10:456–461

- 2. Hoer, et al. Hernia 2002; 6:93-8;
- 3. Henriksen, et al. Br J Surgery 2011; 98: 210-19.
- Dinenno, et al. Circulation 1999; 100:164-70.
 Biyard et al. Circulation 1000; 00: 111-20.
- Rivard, et al. Circulation 1999; 99: 111-20
 Stechmiller JK. Nutr Clin Pract 2010; 25: 61-8
- Stechmiller JK. Nutr Clin Pract 2010; 25: 61-8
 Jonsson, et al. Ann Surg 1991; 214: 605-13
- Jonsson, et al. Ann Surg 1991; 214: 605-13
 Hopf, et al. Arch Surg 1997; 132: 997-1005
- Hopi, et al. Arch Surg 1997; 132: 997-1005
 Levy, et al. Circulation 2008; 2008: 968-76

- Nutrition & Tissue Perfusion
 - Impaired access to protein and oxygen result in impaired healing
 - Low dietary protein related to low skin and fascial wound strength⁷
 - Inadequate tissue oxygen perfusion associated to reduced collagen deposition and wound strength⁸, along with increased risk of infection⁹
 - Impaired tissue perfusion evident in hypertension, diabetes, obesity¹⁰

- 1. Sorensen LT. Hernia 2006; 10:456–461
- 2. Hoer, et al. Hernia 2002; 6:93-8;
- 3. Henriksen, et al. Br J Surgery 2011; 98: 210-19.
- 4. Dinenno, et al. Circulation 1999; 100:164-70.
- 5. Rivard, et al. Circulation 1999; 99: 111-20 Stochmillor IK, Nutr Clin Bract 2010; 25: 67
- 6. Stechmiller JK. Nutr Clin Pract 2010; 25: 61-8
- 7. Jonsson, et al. Ann Surg 1991; 214: 605-13
- Hopf, et al. Arch Surg 1997; 132: 997-1005
 Levy, et al. Circulation 2008; 2008: 968-76

- Infection
 - Wounds considered "contaminated" or "dirty" are more likely to have a surgical site infection¹
 - Infection prolongs inflammatory phase of wound healing²
 - Wound cannot heal if it does not progress through all 3 stages
 - Increase the risk of incisional hernia and wound dehiscence³⁻⁵

- 1. Pessaux Arch Surg 2003; 138: 314-24.
- 2. Dubay, et al. Surg Clin N Am 83: 463–48.
- 3. Israelsson, et al. *Eur J Surg* 1996 162:125-9.
- 4. van Ramhorst et al. *World J Surg* 34:20-7.
- 5. van't Riet, et al. *Am Surg* 2004 70:281-6.
- 6. Brem et al. *J Clin Invest* 2007; 117: 1219-22

- Diabetes⁶
 - Decreased tissue perfusion/circulation
 - Impaired macrophage and fibroblast response
 - Slower wound healing, greater susceptibility to infection
 - Known risk factor for incisional hernia⁵

- 1. Pessaux Arch Surg 2003;138: 314-24.
- 2. Dubay, et al. Surg Clin N Am 83:463–48.
- 3. Israelsson, et al. Eur J Surg 1996;162:125-9.
- 4. van Ramhorst et al. World J Surg. 2010;34:20-7.
- 5. van't Riet, et al. Am Surg 2004;70:281-6.
- 6. Brem et al. J Clin Invest 2007;117:1219-22

Smoking Greatly Increases the Risk for All Wound Complications

- Smoking lead to increased type III collagen synthesis (weaker collagen), increased collagen degradation¹
- Smoking can reduce tissue perfusion and circulation¹
- In a meta-analysis of 479150 patients across 140 cohort studies in countries all of the world, smoking was found to significantly increase the risk of all wound complications²

What are the Operative Factors that Affect Fascia Healing?

- 1. Pessaux Arch Surg 2003;138: 314-24;
- 2. Clark JJ. Crit Care Nurs Q .2002;25:1-12
- 3. Franz, et al. Wound Rep Reg. 2008;16:723-48

Departemen Ilmu Bedah FKUI–RSCM Program Studi Ilmu Bedah

- Pre-operative preparation
 - Antibiotic prophylaxis
- Surgical Approach
 - Incision location
 - Suturing technique
 - Suture choice
 - Intra-operative patient care (e.g., blood transfusions, normothermia)
- Post-operative care

RSCM

Antibiotics

Fascia Healing Depends on Successful Wound Closure

- The closure device must bear the fascial load of recovering patients until the wound regains sufficient strength¹
- For fascia, this takes^{1,2}
- Disruptions in these phases can lead to complications or reduce the strength of the healing fascia

- 1. Dubay, et al. Surg Clin N Am 83: 463–481
- 2. Douglas DM. Br J Surg 1952;40:79-84.

Departemen Ilmu Bedah FKUI–RSCM Program Studi Ilmu Bedah

RSCN

Wound Complications Remain a Challenge

 The reported incidence of wound complications in the literature remains high

Complication	Reported Incidence ^{1,2}	Potentially Achievable Incidence ³	
Surgical Site Infection (SSI)	up to 19%	~5 %	
Wound dehiscence	up to 5%	<0.5 %	
Incisional hernia	up to 23%	~6%	
	$\langle \rangle$		
	Recent publications imply that refinement		

in technique and care can impact the occurrence of complications

1. Seiler , et al, Ann Surg 2009;249:576-82.

- 2. Bloemen, et al, Br J Surg. 2011;98:633-9.
- 3. Millbourn, et al, Arch Surg 2009;144:1056-9.

Wound Complications Occur As A Cascade

- 1. Israelsson, et al. Eur J Surg 1996 162:125-129;
- 2. van Ramhorst et al. World J Surg. 2010 34:20-27;
- 3. van't Riet, et al. Am Surg 2004 70:281-6

- A wound complication is an associated risk for another complication
 - SSI can result in a
 - 2X risk of incisional hernia¹
 - 6X risk of wound separation when considering emergency surgery and patients in poor condition²
 - Wound dehiscence is a significant risk factor for incisional hernia, associated in up to ~47% of incisional hernias³
 - Incisional hernias occur post-dehiscence and are often associated with SSIs^{2,3}
- Preventing one complication can potentially prevent others from occurring

Clinical Evidence Supporting Innovative Surgical Solutions to Achieve Superior Patient Outcomes

Departemen Ilmu Bedah FKUI–RSCM Program Studi Ilmu Bedah

RSC

What are the Operative Factors that Affect Fascia Healing?

- Pre-operative preparation
 - Antibiotic prophylaxis
- Surgical Approach
 - Incision location
 - Suturing technique
 - Suture choice
 - Intra-operative patient care (e.g., blood transfusions, normothermia)
- Post-operative care
 - Antibiotics

- 1. Pessaux Arch Surg 2003;138:314-24;
- 2. Clark JJ. Crit Care Nurs Q 2002;25:1-12
- 3. Franz, et al. Wound Rep Reg 2008;16:723-48

Departemen Ilmu Bedah FKUI–RSCM RSCM

FAKULTAS KEDOKTERAN

Suturing Technique

Residency Program 2016

Known causes of wound dehiscense

2. Van Ramshorst GH, World J Surg. 2010;;34(1):20-7.

Review of Continuous and Interrupted Suturing Patterns

Interrupted suturing pattern

Continuous suturing pattern

- 1. Sissener T. Comp Anim. 2006;11:14-9.
- 2. Boutros S, et al. J Trauma Injury Infect Crit Care. 2000;48:495-7.
- 3. Seiler CM, et al. Ann Surg. 2009;249:576-582.
- 4. Wong NL. J Dermatol Surg Oncol. 1993;19:923-31.
- 5. Kettle, et al. Cochrane Database Syst Rev 2012;11:CD000947.
- 6. Boutros, et al. j Trauma 2000;48:495-47.
- 7. Colombo, et al. Obstet Gynecol 1997;89:684-9.

Advantages^{1,4}

- May be required in wounds with irregular areas
- Use has been described in infected wounds to minimize spread of infection and allow for removal of only the infected stitches
- Lower risk of complete wound closure failure if there is a break in one suture Disadvantages¹⁻³
- Knots increases foreign body material and risks of complications
- Time Consuming

Advantages^{1,4}

- Better distributes tension and minimize tissue strangulation
- Faster than interrupted sutures, shortening procedure time
- Less expensive than interrupted sutures^{5,6,7}
- Use less material, reducing foreign body introduction into the wound
 Disadvantages^{2,3,4}
- Strength and security can be compromised with a break in the suture^{2,3,4}

Effect of Continuous vs. Interrupted Suture Pattern on Incisional Hernia

- A meta-analysis of 14 randomized controlled trials1 (7711 patient enrolled in multiple countries) examining abdominal fascial closure after midline laparotomy found that
- Closure with continuous sutures had a significantly lower rate of incisional hernia compared with interrupted sutures^a
- No significant difference found in rates of other complications (wound dehiscence, suture sinus, infection, wound pain)

1. Diener et al. Ann Surg. 2010;251:843-56.

^a Sutures were classified as non-absorbable, slowly absorbable, or rapidly absorbable. Specific products used included Maxon, Vicryl, PDS I, PDS II, Monoplus, Prolene, Nylon, Ethibond, and Dexon.

Focus on High Risk Population: Obese Patients

- Morbid obesity is a patient factor that increases the risk for acute wound complications
- In a randomized study of continuous vs. interrupted closure techniques in 331 gastric bypass surgeries.¹

1. Derzie AJ et al. J Am Coll Surg. 2000;191:238-43.

Departemen Ilmu Bedah FKUI–RSCM RSCM¹

Suture Choice

Residency Program 2016

Different Suture Materials Are Available For Fascia Closure

	Nonabsorbable	Rapidly Absorbable	Slowly Absorbable
Example suture materials	Nylon, polypropylene	Polyglycolic acid, polyglactin 910	Polyglyconate, polydioxanone
Clinically important characteristics	 Long-term wound support High foreign body response (i.e., encapsulation) 	 Medium–term wound support Minimal tissue reaction 	 Long–term wound support Minimal tissue reaction

Suture Choice Is Crucial During Critical Healing Period

- Critical Healing Period
 - From 14–28 days, the healing fascia begins to have the strength to be self-supporting, but is still vulnerable to wound separation
 - Wound support from the suture continues to provide mechanical strength during this time frame

Breaking Strength Retention Profile Of Suture Materials Vs. Wound Strength Of Healing Fascia

- At 4 weeks, fascia has regained only 40% of its original strength
- Rapidly absorbable sutures have lost the majority of their strength through hydrolysis
- Silk sutures, though long-lasting overall, have been observed to rapidly lose strength in vivo due to protein degradation during initial 2 weeks

Normal fascia healing (illustrative) Delayed fascia healing (illustrative)

> Polyglycolic acid Polyglactin 910 Polyglyconate Polydioxanone

NOTE FOR REVIEWERS: Blue dotted line = silk in vivo BSR based on papers: Herrmann et al. Arch Surg 1973; 106: 707-10. Karaca, et al. J Biomed Mater Res Part B 2008; 87B: 580-9.

Suture material: Absorbable vs. Non-absorbable Clinical evidence

 In a meta-analysis that included 15 studies (n = 6,566)^a and evaluated outcomes associated with different closure techniques for abdominal midline incisions,

Suture type	Ν	Incisional hernia (n)	Dehiscence (n)	Infection (n)	Suture sinus (n)	Wound pain (n)
Continuous Rapidly absorbable vs Nonabsorbable	379 372	60* 31	6 8	34 27	4* 23	25* 50
Continuous Slowly absorbable vs Nonabsorbable	1,330 1,339	119 117	17 17	106 107	12* 28	46* 85
Continuous Rapidly absorbable vs Slowly absorbable	379 370	60* 37	6 13	34 43	4 11	25 23
Interrupted Rapidly absorbable vs Nonabsorbable	59 102	0 6	0 1	6 7	0* 9	_

van't Riet M et al. Br J Surg. 2002;89:1350-6.

^ASutures were classified as nonabsorbable, slowly absorbable, or rapidly absorbable. Specific products used included Nylon, Maxon, Prolene, Vicryl, PDS, Dexon, Ethibond, and stainless steel.

**P* <0.05.

Ideal suture for fascia closure: Clinical evidence

- A 2000 meta-analysis of 32 abdominal fascial studies published from 1966–1998 comparing absorbable and non–absorbable sutures found that
 - There was no difference in rates of incisional hernia between polydioxanone and polypropylene sutures
 - Polyglactin (rapidly absorbable) sutures showed higher incidence of incisional hernia
 - Non-absorbable polypropylene suture had increased occurrence of suture sinus and wound pain

Ideal suture for fascia closure: Clinical evidence in obese patients

- ents
- A 1996 randomized clinical trial of 229 morbidly obese patients undergoing gastric surgery compared the incidence of complications between polydioxanone and polypropylene suture
 - Use of slowly absorbable polydioxanone suture resulted in significantly fewer incisional hernias vs. nonabsorbable polypropylene suture (10% vs. 18%, p ≤0.04)

Antibacterial Sutures: Rationale for Use

Colonization of a suture knot

Colonization of a braided suture

- Like all implants, sutures can be colonized by bacteria which is lead to formation of biofilm^{1,2}
- The biofilm on the suture is responsible for progress of chronic SSI requires long– term treatment³ with substantial hi–costs
 - 1. Mangram et al. Infect Control Hosp Epidemiol. 1999;20:250.
 - 2. Henry-Stanley MJ, et al, Surg Infect (Larchmt). 2010t;11(5):433-9.
 - 3. Kathju S, Nistico L, Hall-Stoodley L, et al. Chronic surgical site infection due to sutureassociated polymicrobialbiofilm. Surg Infect (Larchmt). 2009;10(5):457-61.

Preclinical studies: Antibacterial sutures combat bacterial colonization

- Antibacterial sutures coated with antiseptic compounds (e.g., triclosan/IRGACARE[®] MP) have been shown to:
 - Inhibit bacterial colonization of the suture in vitro for at least 7 days^{1*}
 - Be effective across a range of microbes in vitro^{2*}
 - Staphylococcus aureus, Staphylococcus epidermidis (MRSA, MRSE)
 - Escherichia coli, Klebsiella pneumoniae

Antibacterial sutures create a zone of inhibition around the suture, demonstrated *in vitro*

- 1. Rothenburger et al. Surg Infect (Larchmt). 2002;3(suppl1):s79-87
- 2. Ming et al. Surg Infect (Larchmt). 2008;9:451-7;
- * Demonstrated in ETHICON MONOCRYL Plus and VICRYL Plus Sutures

Clinical evidence for Plus Antibacterial Sutures is Growing

- Antibacterial sutures have been studied in 24 human clinical trials that included over 10,000 patients¹
 - 22 studies performed independently of Ethicon
 - 10 randomized controlled trials (RCTs)

1. Data on file. Ethicon, Inc.

2. APIC . Guide to the Elimination of Orthopedic Surgical Site Infections. www.apic.org/downloads/ortho_guide.pdf. Accessed July 18, 2011

Clinical evidence for Plus Antibacterial Sutures is Growing

Lead Author	Procedure	Ethicon Sponsored	RCT	Study Size (n) Year	
Williams	Breast		\checkmark	150	2011	
Galal	General Surgery		\checkmark	450	2011	
Zhang	Mastectomy	\checkmark	\checkmark	101	2011	
Deliaert	Breast Reduction		\checkmark	26	2009	
Mingmalairak	Appendectomy		\checkmark	100	2009	
Zhuang	Laparotomy		\checkmark	450	2009	
Rozzelle	CSF Shunts		\checkmark	84	2008	
Justinger	Abdominal Wall		\checkmark	2,088	2008	
Defazio	Umbilical Incision		\checkmark	93	2005	
Ford	Pediatric Surgery	\checkmark	\checkmark	151	2005	
Recent APIC Guidelines ² note that "evidence-based clinical studies have demonstrated both the clinical and economic benefit of antimicro <u>bial sutures</u> "						

- 1. Data on file. Ethicon, Inc.
- 2. APIC . Guide to the Elimination of Orthopedic Surgical Site Infections. www.apic.org/downloads/ortho_guide.pdf. Accessed July 18, 2011

Residency Program 2016

Effectiveness of Antibacterial Sutures: Clinical Evidence

- In a recent 2013 meta-analysis of 17 trials (12 of the previous slide) across various surgical specialties found that
 - Triclosan antibacterial sutures had a lower relative risk (RR) of SSI vs. traditional (non-antibacterial) sutures (RR 0.70, 95% CI: 0.57 – 0.85, p<0.001)

	53	SI			
Reference	Triclosan	Control	Weight (%)	Relative risk	Relative risk
Baracs <i>et al.</i> ²⁴	23 of 188	24 of 197	10.8	1.00 (0.59, 1.72)	_ _
DeFazio <i>et al.</i> ²⁵	4 of 43	4 of 50	1.7	1.16 (0.31, 4.37)	
Deliaert <i>et al.</i> 47	0 of 26	0 of 26		Not estimable	
Ford <i>et al</i> . ⁴⁸	3 of 98	0 of 49	0.3	3.54 (0.19, 67.12)	
Salal and El-Hindawy <i>et al.</i> 22	17 of 230	33 of 220	15.5	0.49 (0.28, 0.86)	
sik <i>et al.</i> ³⁶	9 of 170	19 of 340	5.8	0.95 (0.44, 2.05)	_
Khachatryan <i>et al.</i> 33	6 of 65	14 of 68	6.3	0.45 (0.18, 1.10)	_
vlattavelli <i>et al</i> . ³⁴	11 of 108	12 of 109	5.5	0.93 (0.43, 2.01)	
Vingmalairak <i>et al.</i> 26	5 of 50	4 of 50	1.8	1.25 (0.36, 4.38)	
Rasić et al. ²³	4 of 91	12 of 93	5.5	0.34 (0.11, 1.02)	
Rozzelle <i>et al.</i> ²¹	2 of 46	8 of 38	4.0	0.21 (0.05, 0.92)	a
Seim <i>et al</i> . ²⁸	16 of 160	17 of 163	7.7	0.96 (0.50, 1.83)	_
Singh <i>et al.</i> ³²	6 of 50	16 of 50	7.4	0.38 (0.16, 0.88)	C
Furtiainen et al.29	31 of 139	30 of 137	13.9	1.02 (0.65, 1.59)	_ ___
Nilliams <i>et al.</i> ³⁵	10 of 66	14 of 61	6.7	0.66 (0.32, 1.37)	_
Zhang <i>et al.</i> 27	2 of 46	5 of 43	2.4	0.37 (0.08, 1.83)	
Zhuang et al.31	0 of 150	15 of 300	4.8	0.06 (0.00, 1.07)	
lotal	149 of 1726	227 of 1994	100	0·70 (0·57, 0·85)	•
Heterogeneity: $\chi^2 = 21.26$, 15 d.	$f_{-1}R = 0.129$: $I^2 = 2$	99%			
Test for overall effect: $Z = 3.61$	P 0001 Dep	artemen IIm	u Bedah FK	(UI-RSCM	RSCMours triclosan Favours control

Ex-US ONLY

FAKULTAS KEDOKTERAN

Knotting technique

Residency Program 2016

Suture Knots

- The ideal suture knot has
 - High knot security
 - High knot efficiency (knot tensile strength: Straight tensile strength)
 - Minimal volume (to reduce foreign body response)
- Different knots have different knot efficiency

Self-locking knot ⁽¹⁾

- 1. Does not slip
- 2. Minimal effect on suture strength
- 3. Small in volume

Current Research in Further Improving Fascial Closure

Residency Program 2016

Technical Refinements of Continuous Suturing

- The following technical factors for a continuous suture pattern can potentially have an influence on closure strength
 - Suture length to wound length ratio (SL:WL)
 - Bite size
 - Bite spacing

SL:WL ≥4 large bites large spacing

SL:WL ≥4 small bites small spacing

KAMMAMAAAAA.

RSCM

Residency Program 2016

Mass Closure vs. Aponeurosis Only Closure

- Clinical judgment is needed in between these approaches
 - The ideal closure method should provide adequate tensile strength and elasticity to accommodate increases in abdominal pressure during the postoperative period^{1,2}

Mass Closure Closure of all layers of the abdominal wall together (except skin)

RSCM

Aponeurosis Only Closure of aponeurosis alone

1. van't Riet M et al. Br J Surg. 2002;89:1350-6. 2. Cengiz Y et al. Eur J Surg. 2001;167:60-3.

3. Weiland DE et al. Am J Surg. 1998;176:666-70. 4. Berretta R et al. Austral N Zealand J Obstet Gynecol. 2010;50:391-6.

Residency Program 2016

Mass Closure vs. Aponeurosis Only Closure

- Clinical judgment is needed in between these approaches
 - Preclinical animal studies show aponeurosis only closure may have higher risk of wound separation under conditions of high intraabdominal pressure²

Mass Closure Closure of all layers of the abdominal wall together (except skin)

RSCM

Aponeurosis Only Closure of aponeurosis alone

1. van't Riet M et al. Br J Surg. 2002;89:1350-6. 2. Cengiz Y et al. Eur J Surg. 2001;167:60-3.

3. Weiland DE et al. Am J Surg. 1998;176:666-70. 4. Berretta R et al. Austral N Zealand J Obstet Gynecol. 2010;50:391-6.

Residency Program 2016

Mass Closure vs. Aponeurosis Only Closure

- Clinical judgment is needed in between these approaches
 - Clinical evidence shows that for gynecologic cancer surgery, mass closure may be preferred due to lower pain and complication risks^{3,4}

Mass Closure Closure of all layers of the abdominal wall together (except skin)

RSCM

Aponeurosis Only Closure of aponeurosis alone

1. van't Riet M et al. Br J Surg. 2002;89:1350-6. 2. Cengiz Y et al. Eur J Surg. 2001;167:60-3.

3. Weiland DE et al. Am J Surg. 1998;176:666-70. 4. Berretta R et al. Austral N Zealand J Obstet Gynecol. 2010;50:391-6.

Residency Program 2016

Departemen Ilmu Bedah FKUI–RSCM Program Studi Ilmu Bedah

RSC

Evidence-based Recommendations for Fascia Closure

- Based on a rigorous review of the available clinical evidence, the ideal fascial closure method to optimize patient outcomes is composed of:
 - Continuous suture pattern
 - Slowly absorbable suture
 - Antibacterial suture to prevent colonization
- These methods represent the best choices for a surgeon to address the risk factors for a wound complication and maximize the potential for optimal clinical outcomes
- Additional refinements to fascial closure technique are currently being researched in the literature. However, no recommendations can be made.

FAKULTAS

The Evolution of Wound Closure: Anchored Tissue Control Devices

Suture Knot: Site of Mechanical Weakness

- The knot is the weakest point of the suture line
 - In vitro testing found that a knot significantly reduces the tensile strength of a suture by up to 65%.^{1,2}
 - Laboratory tests on hand-tied and arthroscopic knots have shown that suture failures occur at the knot (knot breakage or unraveling)^{3,4}

- 1. Trimbos, et al. Obstet Gynecol 1984;64:274-80.
 - 2. Stone, et al. Surface Coatings Tech 1986;27:287-93.
- 3. Elkousy, et al. Arthroscopy 2005; 21:204-10.
- Muffly, et al. J Surg Edu 2011;68:29-31.
- 5. Good, et al. J Surg Edu 2012, e-publication.
- 6. Van Sickle, et al. J Am Coll Surg 2008; 207:560-8.
- 7. Verdaasdonk, et al. Surg Endosc 2008; 22:1636-42.

Suture Knot: Site of Mechanical Weakness

- Different knots and inconsistent knot tying can further compromise mechanical strength
 - Quality of knot tying can vary with experience and practice^{5,6,7}
 - The same knot may have different security in different suture materials²
 - Different endoscopic knots require different numbers of reinforcing half-hitches for maximal security³
- 1. Trimbos, et al. Obstet Gynecol 1984;64:274-80.
- Stone, et al. Surface Coatings Tech 1986;27:287-93.
- 3. Elkousy, et al. Arthroscopy 2005; 21:204-10.
- . Muffly, et al. J Surg Edu 2011;68:29-31.
- 5. Good, et al. J Surg Edu 2012, e-publication.
- 6. Van Sickle, et al. J Am Coll Surg 2008; 207:560-8.
- 7. Verdaasdonk, et al. Surg Endosc 2008; 22:1636-42.

Anchored Tissue Control Devices Remove The Need For Knots

- Anchored Tissue Control Devices have anchors (or "barbs") engineered along the core, either pressed out of the core in a symmetric pattern or formed within the core in a pattern
- Anchors engage the surrounding tissue which secures the device in place on each pass and eliminates the need for knots
- Devices are deployed using a continuous technique, significantly faster than interrupted suturing

For illustration purposes only

RSCM

FAKULTAS

Conclusions

Residency Program 2016

Conclusions

- Choice of closure technique is one of the factors under a surgeon's control to improve healing and reduce the risk of wound complications
- The choice of fascia closure starts with an understanding of fascia healing and the critical healing period
- A continuous suturing pattern appears to represent the optimal suturing technique for abdominal fascia closure

Conclusions

- Slowly absorbable sutures offer wound support during and after the critical healing period, leading to:
 - Comparable outcomes to non-absorbable sutures
 - Reduced risk of pain and suture sinus vs. non-absorbable sutures
 - Reduced risk of incisional hernia vs. rapidly absorbable sutures
- Antibacterial sutures are another tool in the surgeon armamentarium to reduce microbial colonization, addressing a risk factor for surgical site infections
- Anchored tissue control devices are the next evolution of wound closure devices and offer new benefits over traditional sutures

End of modules: Thank You

